1、先删除“缓存”再去更新“数据库”。但是该方案还存在问题:
在高并发情况下,第一个线程删除缓存,还没来得及去操作数据库,这时第二个线程访问缓存,发现为null,于是去数据库查询,获取到需要的值,这时候第一个线程才开始操作数据库,然后设置缓存,但是第二个线程又跟奇怪的将第一个线程刚设置的缓存给覆盖掉,然后就出现“乌龙”,数据不一致的问题也出现了!
解决方案:
① 先操作缓存去修改数据库,但不删除缓存。将这个不删除的缓存设置为一个特殊值(*123),当客户端读缓存的时候,发现有前缀包含( * ???),知道他是坏值,就会进行休眠(1秒这样),然后再去查询Redis。 //这样做的弊端是:特殊值对业务可能出现影响,休眠时间会重复(高并发情况下,修改操作频繁,反复会修改这个特殊值的内容,然后同时出现睡眠),影响性能。
②延迟双删,先删除缓存数据,再把数据更新到数据库中,休眠一会(根据业务逻辑的耗时,更改休眠时间)后再次删除该缓存数据。若线程1是更新请求,线程2是查询请求,延迟双删,可以保证再这两个请求同时存在的情况下的数据一致性!确保查询请求结束,更新请求可以删除查询请求造成的缓存脏数据。
总结:写操作不能太频繁!
2、先删除“数据库”再去更新“缓存”。
该案例的问题是:数据库写完之后,再删除缓存,但删除失败了,这会导致数据不一致。
解决方案:
①给缓存设置一个过期时间,但缺点是,过期时间内 不能保证数据是有用的数据,可能是上次没删掉的坏数据。
②引入MQ,保证原子操作。
一个去删缓存,一个去操作数据库。MQ若是删除操作失败了,启动MQ重试机制,在重试的这段时间,缓存数据不会更新。
③将热点数据缓存设置为永不过期,但是在value当中写入一个逻辑上的过期时间,另外起一个后台线程,扫描这些key,对于已逻辑上过期的缓存,进行删除。
总结:始终只能保证一定时间内的最终一致性。
3、Redis和Mysql集群实现的读写分离架构
如果MySQL采用的是读写分离的架构,主从服务器之间也会存在时间差,也就是A更新操作,删除缓存,并请求主数据库进行数据更新,主库与从库进行同步数据的操作,B进行查询操作时,缓存中没有数据,就去从库中读取数据,此时主从数据未更新完成,拿到的还是旧数据。
解决方法是:查询数据经过Redis时,若查询缓存为空时,强制将其指向主数据库中进行查询。
4、异步更新缓存(基于订阅binlog的同步机制)
MySQL binlog增量订阅消费+消息队列+增量数据更新到redis
读Redis:热数据基本都在Redis
写MySQL:增删改都是操作MySQL
更新Redis数据:MySQ的数据操作binlog,来更新到Redis Redis更新
①数据操作主要分为两大块:
一个是全量(将全部数据一次写入到redis)
一个是增量(实时更新) 这里说的是增量,指的是mysql的update、insert、delate变更数据。
②读取binlog后分析 ,利用消息队列,推送更新各台的redis缓存数据。
这样一旦MySQL中产生了新的写入、更新、删除等操作,就可以把binlog相关的消息推送至Redis,Redis再根据binlog中的记录,对Redis进行更新。
这种机制,很类似MySQL的主从备份机制,因为MySQL的主备也是通过binlog来实现的数据一致性。
这里可以结合使用canal(阿里的一款开源框架),通过该框架可以对MySQL的binlog进行订阅,而canal正是模仿了mysql的slave数据库的备份请求,使得Redis的数据更新达到了相同的效果。
帖子还没人回复快来抢沙发