【校招VIP】[整理]Linux内核 I/O调度

1天前 收藏 0 评论 0 java开发

【校招VIP】[整理]Linux内核 I/O调度

转载声明:文章来源https://blog.csdn.net/m0_74282605/article/details/134552199

一) I/O调度程序的总结

1) 当向设备写入数据块或是从设备读出数据块时,请求都被安置在一个队列中等待完成.

2) 每个块设备都有它自己的队列.

3) I/O调度程序负责维护这些队列的顺序,以更有效地利用介质.I/O调度程序将无序的I/O操作变为有序的I/O操作.

4) 内核必须首先确定队列中一共有多少个请求,然后才开始进行调度.

二) I/O调度的4种算法

1) CFQ(Completely Fair Queuing, 完全公平排队)

特点:

在最新的内核版本和发行版中,都选择CFQ做为默认的I/O调度器,对于通用的服务器也是最好的选择.

CFQ试图均匀地分布对I/O带宽的访问,避免进程被饿死并实现较低的延迟,是deadline和as调度器的折中.

CFQ对于多媒体应用(video,audio)和桌面系统是最好的选择.

CFQ赋予I/O请求一个优先级,而I/O优先级请求独立于进程优先级,高优先级进程的读写不能自动地继承高的I/O优先级.

工作原理:

CFQ为每个进程/线程单独创建一个队列来管理该进程所产生的请求,也就是说每个进程一个队列,各队列之间的调度使用时间片来调度,以此来保证每个进程都能被很好的分配到I/O带宽.I/O调度器每次执行一个进程的4次请求.

2) NOOP(电梯式调度程序)

特点:

在Linux2.4或更早的版本的调度程序,那时只有这一种I/O调度算法.

NOOP实现了一个FIFO队列,它像电梯的工作主法一样对I/O请求进行组织,当有一个新的请求到来时,它将请求合并到最近的请求之后,以此来保证请求同一介质.

NOOP倾向饿死读而利于写.

NOOP对于闪存设备,RAM,嵌入式系统是最好的选择.

电梯算法饿死读请求的解释:

因为写请求比读请求更容易.

写请求通过文件系统cache,不需要等一次写完成,就可以开始下一次写操作,写请求通过合并,堆积到I/O队列中.

读请求需要等到它前面所有的读操作完成,才能进行下一次读操作.在读操作之间有几毫秒时间,而写请求在这之间就到来,饿死了后面的读请求.

3) Deadline(截止时间调度程序)

特点:

通过时间以及硬盘区域进行分类,这个分类和合并要求类似于noop的调度程序.

Deadline确保了在一个截止时间内服务请求,这个截止时间是可调整的,而默认读期限短于写期限.这样就防止了写操作因为不能被读取而饿死的现象.

Deadline对数据库环境(ORACLE RAC,MYSQL等)是最好的选择.

4) AS(预料I/O调度程序)

特点:

本质上与Deadline一样,但在最后一次读操作后,要等待6ms,才能继续进行对其它I/O请求进行调度.

可以从应用程序中预订一个新的读请求,改进读操作的执行,但以一些写操作为代价.

它会在每个6ms中插入新的I/O操作,而会将一些小写入流合并成一个大写入流,用写入延时换取最大的写入吞吐量.

AS适合于写入较多的环境,比如文件服务器

AS对数据库环境表现很差.

三) I/O调度方法的查看与设置

1) 查看当前系统的I/O调度

[root@test1 tmp]# cat /sys/block/sda/queue/scheduler

noop anticipatory deadline [cfq]

2) 临时更改I/O调度

例如:想更改到noop电梯调度算法:

echo noop > /sys/block/sda/queue/scheduler

3) 永久更改I/O调度

修改内核引导参数,加入elevator=调度程序名

[root@test1 tmp]# vi /boot/grub/menu.lst

更改到如下内容:

kernel /boot/vmlinuz-2.6.18-8.el5 ro root=LABEL=/ elevator=deadline rhgb quiet

重启之后,查看调度方法:

[root@test1 ~]# cat /sys/block/sda/queue/scheduler

noop anticipatory [deadline] cfq

已经是deadline了

四) I/O调度程序的测试

本次测试分为只读,只写,读写同时进行,分别对单个文件600MB,每次读写2M,共读写300次.

1) 测试磁盘读

[root@test1 tmp]# echo deadline > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/sda1 f=/dev/null bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.81189 seconds, 92.4 MB/s

real 0m6.833s
user 0m0.001s
sys 0m4.556s

[root@test1 tmp]# echo noop > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/sda1 f=/dev/null bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.61902 seconds, 95.1 MB/s

real 0m6.645s
user 0m0.002s
sys 0m4.540s

[root@test1 tmp]# echo anticipatory > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/sda1 f=/dev/null bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 8.00389 seconds, 78.6 MB/s

real 0m8.021s
user 0m0.002s
sys 0m4.586s

[root@test1 tmp]# echo cfq > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/sda1 f=/dev/null bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 29.8 seconds, 21.1 MB/s

real 0m29.826s
user 0m0.002s
sys 0m28.606s

结果:

第一 noop:用了6.61902秒,速度为95.1MB/s

第二 deadline:用了6.81189秒,速度为92.4MB/s

第三 anticipatory:用了8.00389秒,速度为78.6MB/s

第四 cfq:用了29.8秒,速度为21.1MB/s

2) 测试写磁盘

[root@test1 tmp]# echo cfq > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/zero f=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.93058 seconds, 90.8 MB/s

real 0m7.002s
user 0m0.001s
sys 0m3.525s

[root@test1 tmp]# echo anticipatory > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/zero f=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.79441 seconds, 92.6 MB/s

real 0m6.964s
user 0m0.003s
sys 0m3.489s

[root@test1 tmp]# echo noop > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/zero f=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 9.49418 seconds, 66.3 MB/s

real 0m9.855s
user 0m0.002s
sys 0m4.075s

[root@test1 tmp]# echo deadline > /sys/block/sda/queue/scheduler
[root@test1 tmp]# time dd if=/dev/zero f=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 6.84128 seconds, 92.0 MB/s

real 0m6.937s
user 0m0.002s
sys 0m3.447s

测试结果:

第一 anticipatory,用了6.79441秒,速度为92.6MB/s

第二 deadline,用了6.84128秒,速度为92.0MB/s

第三 cfq,用了6.93058秒,速度为90.8MB/s

第四 noop,用了9.49418秒,速度为66.3MB/s

3) 测试同时读/写

[root@test1 tmp]# echo deadline > /sys/block/sda/queue/scheduler
[root@test1 tmp]# dd if=/dev/sda1 f=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 15.1331 seconds, 41.6 MB/s

[root@test1 tmp]# echo cfq > /sys/block/sda/queue/scheduler
[root@test1 tmp]# dd if=/dev/sda1 f=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 36.9544 seconds, 17.0 MB/s

[root@test1 tmp]# echo anticipatory > /sys/block/sda/queue/scheduler
[root@test1 tmp]# dd if=/dev/sda1 f=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 23.3617 seconds, 26.9 MB/s

[root@test1 tmp]# echo noop > /sys/block/sda/queue/scheduler
[root@test1 tmp]# dd if=/dev/sda1 f=/tmp/test bs=2M count=300
300+0 records in
300+0 records out
629145600 bytes (629 MB) copied, 17.508 seconds, 35.9 MB/s

测试结果:

第一 deadline,用了15.1331秒,速度为41.6MB/s

第二 noop,用了17.508秒,速度为35.9MB/s

第三 anticipatory,用了23.3617秒,速度为26.9MS/s

第四 cfq,用了36.9544秒,速度为17.0MB/s

五) ionice

ionice可以更改任务的类型和优先级,不过只有cfq调度程序可以用ionice.

有三个例子说明ionice的功能:

采用cfq的实时调度,优先级为7

ionice -c1 -n7 -ptime dd if=/dev/sda1 f=/tmp/test bs=2M count=300&

采用缺省的磁盘I/O调度,优先级为3

ionice -c2 -n3 -ptime dd if=/dev/sda1 f=/tmp/test bs=2M count=300&

采用空闲的磁盘调度,优先级为0

ionice -c3 -n0 -ptime dd if=/dev/sda1 f=/tmp/test bs=2M count=300&

ionice的三种调度方法,实时调度最高,其次是缺省的I/O调度,最后是空闲的磁盘调度.

ionice的磁盘调度优先级有8种,最高是0,最低是7.

注意,磁盘调度的优先级与进程nice的优先级没有关系.

一个是针对进程I/O的优先级,一个是针对进程CPU的优先级.

C 0条回复 评论

帖子还没人回复快来抢沙发