最近总结了一些数据结构和算法相关的题目,这是第一篇文章,关于二叉树的。
先上二叉树的数据结构:
1 2 3 4 5 6 7 | class TreeNode{ int val; //左孩子 TreeNode left; //右孩子 TreeNode right; } |
二叉树的题目普遍可以用递归和迭代的方式来解
1.求二叉树的最大深度
1 2 3 4 5 6 7 8 | int maxDeath(TreeNode node){ if (node== null ){ return 0; } int left = maxDeath(node.left); int right = maxDeath(node.right); return Math.max(left,right) + 1; } |
2.求二叉树的最小深度
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | int getMinDepth(TreeNode root){ if (root == null ){ return 0; } return getMin(root); } int getMin(TreeNode root){ if (root == null ){ return Integer.MAX_VALUE; } if (root.left == null &&root.right == null ){ return 1; } return Math.min(getMin(root.left),getMin(root.right)) + 1; } |
3,求二叉树中节点的个数
1 2 3 4 5 6 7 8 9 | int numOfTreeNode(TreeNode root){ if (root == null ){ return 0; } int left = numOfTreeNode(root.left); int right = numOfTreeNode(root.right); return left + right + 1; } |
4,求二叉树中叶子节点的个数
1 2 3 4 5 6 7 8 9 10 | int numsOfNoChildNode(TreeNode root){ if (root == null ){ return 0; } if (root.left== null &&root.right== null ){ return 1; } return numsOfNodeTreeNode(root.left)+numsOfNodeTreeNode(root.right); } |
5.求二叉树中第k层节点的个数
1 2 3 4 5 6 7 8 9 10 11 | int numsOfkLevelTreeNode(TreeNode root,int k){ if (root == null ||k<1){ return 0; } if (k==1){ return 1; } int numsLeft = numsOfkLevelTreeNode(root.left,k-1); int numsRight = numsOfkLevelTreeNode(root.right,k-1); return numsLeft + numsRight; } |
6.判断二叉树是否是平衡二叉树
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | boolean isBalanced(TreeNode node){ return maxDeath2(node)!=-1; } int maxDeath2(TreeNode node){ if (node == null ){ return 0; } int left = maxDeath2(node.left); int right = maxDeath2(node.right); if (left==-1||right==-1||Math.abs(left-right)>1){ return -1; } return Math.max(left, right) + 1; } |
7.判断二叉树是否是完全二叉树
什么是完全二叉树呢?参见
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | boolean isCompleteTreeNode(TreeNode root){ if (root == null ){ return false ; } Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.add(root); boolean result = true ; boolean hasNoChild = false ; while (!queue.isEmpty()){ TreeNode current = queue.remove(); if (hasNoChild){ if (current.left!= null ||current.right!= null ){ result = false ; break ; } } else { if (current.left!= null &¤t.right!= null ){ queue.add(current.left); queue.add(current.right); } else if (current.left!= null &¤t.right== null ){ queue.add(current.left); hasNoChild = true ; } else if (current.left== null &¤t.right!= null ){ result = false ; break ; } else { hasNoChild = true ; } } } return result; } |
8.两个二叉树是否完全相同
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | boolean isSameTreeNode(TreeNode t1,TreeNode t2){ if (t1== null &&t2== null ){ return true ; } else if (t1== null ||t2== null ){ return false ; } if (t1.val != t2.val){ return false ; } boolean left = isSameTreeNode(t1.left,t2.left); boolean right = isSameTreeNode(t1.right,t2.right); return left&&right; } |
9.两个二叉树是否互为镜像
1 2 3 4 5 6 7 8 9 10 11 12 13 | boolean isMirror(TreeNode t1,TreeNode t2){ if (t1== null &&t2== null ){ return true ; } if (t1== null ||t2== null ){ return false ; } if (t1.val != t2.val){ return false ; } return isMirror(t1.left,t2.right)&&isMirror(t1.right,t2.left); } |
10.翻转二叉树or镜像二叉树
1 2 3 4 5 6 7 8 9 10 | TreeNode mirrorTreeNode(TreeNode root){ if (root == null ){ return null ; } TreeNode left = mirrorTreeNode(root.left); TreeNode right = mirrorTreeNode(root.right); root.left = right; root.right = left; return root; } |
11.求两个二叉树的最低公共祖先节点
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | TreeNode getLastCommonParent(TreeNode root,TreeNode t1,TreeNode t2){ if (findNode(root.left,t1)){ if (findNode(root.right,t2)){ return root; } else { return getLastCommonParent(root.left,t1,t2); } } else { if (findNode(root.left,t2)){ return root; } else { return getLastCommonParent(root.right,t1,t2) } } } // 查找节点node是否在当前 二叉树中 boolean findNode(TreeNode root,TreeNode node){ if (root == null || node == null ){ return false ; } if (root == node){ return true ; } boolean found = findNode(root.left,node); if (!found){ found = findNode(root.right,node); } return found; } |
12.二叉树的前序遍历
迭代解法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ArrayList<Integer> preOrder(TreeNode root){ Stack<TreeNode> stack = new Stack<TreeNode>(); ArrayList<Integer> list = new ArrayList<Integer>(); if (root == null ){ return list; } stack.push(root); while (!stack.empty()){ TreeNode node = stack.pop(); list.add(node.val); if (node.right!= null ){ stack.push(node.right); } if (node.left != null ){ stack.push(node.left); } } return list; } |
递归解法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ArrayList<Integer> preOrderReverse(TreeNode root){ ArrayList<Integer> result = new ArrayList<Integer>(); preOrder2(root,result); return result; } void preOrder2(TreeNode root,ArrayList<Integer> result){ if (root == null ){ return ; } result.add(root.val); preOrder2(root.left,result); preOrder2(root.right,result); } |
13.二叉树的中序遍历
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ArrayList<Integer> inOrder(TreeNode root){ ArrayList<Integer> list = new ArrayList<<Integer>(); Stack<TreeNode> stack = new Stack<TreeNode>(); TreeNode current = root; while (current != null || !stack.empty()){ while (current != null ){ stack.add(current); current = current.left; } current = stack.peek(); stack.pop(); list.add(current.val); current = current.right; } return list; } |
14.二叉树的后序遍历
1 2 3 4 5 6 7 8 9 10 | ArrayList<Integer> postOrder(TreeNode root){ ArrayList<Integer> list = new ArrayList<Integer>(); if (root == null ){ return list; } list.addAll(postOrder(root.left)); list.addAll(postOrder(root.right)); list.add(root.val); return list; } |
15.前序遍历和后序遍历构造二叉树
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | TreeNode buildTreeNode(int[] preorder,int[] inorder){ if (preorder.length!=inorder.length){ return null ; } return myBuildTree(inorder,0,inorder.length-1,preorder,0,preorder.length-1); } TreeNode myBuildTree(int[] inorder,int instart,int inend,int[] preorder,int prestart,int preend){ if (instart>inend){ return null ; } TreeNode root = new TreeNode(preorder[prestart]); int position = findPosition(inorder,instart,inend,preorder[start]); root.left = myBuildTree(inorder,instart,position-1,preorder,prestart+1,prestart+position-instart); root.right = myBuildTree(inorder,position+1,inend,preorder,position-inend+preend+1,preend); return root; } int findPosition(int[] arr,int start,int end,int key){ int i; for (i = start;i<=end;i++){ if (arr[i] == key){ return i; } } return -1; } |
16.在二叉树中插入节点
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | TreeNode insertNode(TreeNode root,TreeNode node){ if (root == node){ return node; } TreeNode tmp = new TreeNode(); tmp = root; TreeNode last = null ; while (tmp!= null ){ last = tmp; if (tmp.val>node.val){ tmp = tmp.left; } else { tmp = tmp.right; } } if (last!= null ){ if (last.val>node.val){ last.left = node; } else { last.right = node; } } return root; } |
17.输入一个二叉树和一个整数,打印出二叉树中节点值的和等于输入整数所有的路径
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | void findPath(TreeNode r,int i){ if (root == null ){ return ; } Stack<Integer> stack = new Stack<Integer>(); int currentSum = 0; findPath(r, i, stack, currentSum); } void findPath(TreeNode r,int i,Stack<Integer> stack,int currentSum){ currentSum+=r.val; stack.push(r.val); if (r.left== null &&r.right== null ){ if (currentSum==i){ for (int path:stack){ System.out.println(path); } } } if (r.left!= null ){ findPath(r.left, i, stack, currentSum); } if (r.right!= null ){ findPath(r.right, i, stack, currentSum); } stack.pop(); } |
18.二叉树的搜索区间
给定两个值 k1 和 k2(k1 < k2)和一个二叉查找树的根节点。找到树中所有值在 k1 到 k2 范围内的节点。即打印所有x (k1 <= x <= k2) 其中 x 是二叉查找树的中的节点值。返回所有升序的节点值。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ArrayList<Integer> result; ArrayList<Integer> searchRange(TreeNode root,int k1,int k2){ result = new ArrayList<Integer>(); searchHelper(root,k1,k2); return result; } void searchHelper(TreeNode root,int k1,int k2){ if (root == null ){ return ; } if (root.val>k1){ searchHelper(root.left,k1,k2); } if (root.val>=k1&&root.val<=k2){ result.add(root.val); } if (root.val<k2){ searchHelper(root.right,k1,k2); } } |
19.二叉树的层次遍历
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ArrayList<ArrayList<Integer>> levelOrder(TreeNode root){ ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>(); if (root == null ){ return result; } Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.offer(root); while (!queue.isEmpty()){ int size = queue.size(); ArrayList<<Integer> level = new ArrayList<Integer>(): for (int i = 0;i < size ;i++){ TreeNode node = queue.poll(); level.add(node.val); if (node.left != null ){ queue.offer(node.left); } if (node.right != null ){ queue.offer(node.right); } } result.add(Level); } return result; } |
20.二叉树内两个节点的最长距离
二叉树中两个节点的最长距离可能有三种情况:
1.左子树的最大深度+右子树的最大深度为二叉树的最长距离
2.左子树中的最长距离即为二叉树的最长距离
3.右子树种的最长距离即为二叉树的最长距离
因此,递归求解即可
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | private static class Result{ int maxDistance; int maxDepth; public Result() { } public Result(int maxDistance, int maxDepth) { this .maxDistance = maxDistance; this .maxDepth = maxDepth; } } int getMaxDistance(TreeNode root){ return getMaxDistanceResult(root).maxDistance; } Result getMaxDistanceResult(TreeNode root){ if (root == null ){ Result empty = new Result(0,-1); return empty; } Result lmd = getMaxDistanceResult(root.left); Result rmd = getMaxDistanceResult(root.right); Result result = new Result(); result.maxDepth = Math.max(lmd.maxDepth,rmd.maxDepth) + 1; result.maxDistance = Math.max(lmd.maxDepth + rmd.maxDepth,Math.max(lmd.maxDistance,rmd.maxDistance)); return result; } |
21.不同的二叉树
给出 n,问由 1...n 为节点组成的不同的二叉查找树有多少种?
1 2 3 4 5 6 7 8 9 10 11 | int numTrees(int n ){ int[] counts = new int[n+2]; counts[0] = 1; counts[1] = 1; for (int i = 2;i<=n;i++){ for (int j = 0;j<i;j++){ counts[i] += counts[j] * counts[i-j-1]; } } return counts[n]; } |
22.判断二叉树是否是合法的二叉查找树(BST)
一棵BST定义为:
节点的左子树中的值要严格小于该节点的值。
节点的右子树中的值要严格大于该节点的值。
左右子树也必须是二叉查找树。
一个节点的树也是二叉查找树。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | public int lastVal = Integer.MAX_VALUE; public boolean firstNode = true ; public boolean isValidBST(TreeNode root) { // write your code here if (root== null ){ return true ; } if (!isValidBST(root.left)){ return false ; } if (!firstNode&&lastVal >= root.val){ return false ; } firstNode = false ; lastVal = root.val; if (!isValidBST(root.right)) { return false ; } return true ; } |
深刻的理解这些题的解法思路,在面试中的二叉树题目就应该没有什么问题。
简单易懂,很容易理解,谢谢
老师讲得真好,通俗易懂
等了好久,终于开放投递通道了
不错
太强了,学完框架再回来看
感谢前辈